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Follicles: A Control Mechanism for Selection of Dominant Follicles1
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ABSTRACT

This review summarizes evidence for the role of proteolytic
enzymes that degrade and inactivate insulin-like growth factor
binding proteins (IGFBP) during follicular development in mam-
mals. In some species (e.g., bovine), evidence indicates that de-
creases in IGFBP-4 and -5 levels in estrogen-dominant preovu-
latory follicles are likely due, in part, to increased protease ac-
tivity, whereas lower levels of IGFBP-2 are not due to increased
proteolysis. Increased IGFBP-4 and -5 protease along with lower
amounts of IGFBP-4 binding activity and greater amounts of free
IGF-I are some of the earliest developmental changes docu-
mented in bovine growing antral follicles. This protease activity
has recently been ascribed to serine metalloprotease(s), includ-
ing pregnancy-associated plasma protein-A (PAPP-A), which was
first detected in human follicular fluid nearly 20 yr ago. Other
recent studies verified the presence of PAPP-A mRNA in gran-
ulosa cells of humans, monkeys, cattle, mice, and pigs. Increases
in the amount of PAPP-A mRNA in granulosa cells during follic-
ular development occurs in some but not all species, indicating
that other proteases or protease inhibitors may be involved in
IGFBP degradation. Whether the hormonal control of PAPP-A
production/activity by the ovary differs between monotocous
and polytocous animals will require further study. These prote-
ase-induced decreases in IGFBP-4 and -5 likely cause increased
levels of bioavailable (or free) IGFs that stimulate steroidogen-
esis and mitogenesis in developing dominant follicles, which ul-
timately prepare the follicle(s) and oocyte(s) for successful ovu-
lation and fertilization.

follicle, follicular development, granulosa cells, growth factors,
ovary

INTRODUCTION

Insulin-like growth factor-I (IGF-I) and IGF-II increase
mitogenesis and synergistically augment the stimulatory ef-
fects of gonadotropins on steroidogenesis of ovarian cells
in vitro [for review, see 1–4]. Whether IGF-I or -II is the
primary trophic stimulus to the ovary may depend on the
species because granulosa cells of human follicles contain
IGF-II mRNA and not IGF-I mRNA [2, 4–6], whereas
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granulosa cells of rats contain IGF-I and not IGF-II mRNA
[2, 7, 8] and bovine granulosa cells contain both [2, 9].
Published data indicate that both IGF type I and II receptors
are present in granulosa and theca cells but IGF-II is a less
effective stimulator of ovarian cell steroidogenesis than
IGF-I due to its weaker competition for the type I IGF
receptor [2, 10, 11]. Nonetheless, with an ED50 of IGF-II
on ovarian cell steroidogenesis ranging between 1.4 and 37
ng/ml [10–13], increased free IGF-II as well as IGF-I may
further enhance follicular cell differentiation. In most of the
mammalian species evaluated, follicular growth and atresia
are associated with changes in follicular fluid (FF) insulin-
like growth factor binding protein (IGFBP) levels more
than with changes in total FF concentrations of IGF-I or -
II [1–4, 14, 15]. There are at least six different IGFBPs
(22–45 kDa), all of which are high-affinity carrier proteins
that bind IGF-I and IGF-II, prolong their half-lives, and in
most situations, block their action [for review, see 2, 16–
18]. Specifically, in cultured granulosa and thecal cells,
IGFBPs have the ability to inhibit the synergistic effects of
IGF-I and gonadotropins on steroidogenesis [19–23]. In
some cell types, IGFBPs may have direct IGF-independent
effects [17, 18], but whether these are operative within
ovarian cells is unknown. Levels (as measured by ligand
blotting and thus measuring binding activity) of IGFBP-2,
-4, and -5 in FF decrease during follicular growth and de-
velopment of dominant follicles, and increase during atresia
in cattle [2, 15, 24], sheep [3, 25], pigs [26–28], humans
[4, 29], and horses [14, 30]. In contrast, levels (as measured
by ligand blotting and thus measuring binding activity) of
IGFBP-3, the predominant IGFBP in FF, during follicular
growth remain constant [30] or increase [14] in horses and
are unchanged in cattle [15, 24, 31, 32] and humans [29].
Affinities of IGFBP-2 and -5 for IGF-II are 3- to 10-fold
greater than for IGF-I, whereas affinities of IGFBP-3 and -
4 for IGF-II are similar to those for IGF-I [2, 16, 17, 33].
Thus, ligand blotting techniques using only 125I-IGF-I may
not be as sensitive as using 125I-IGF-II to detect some of
the IGFBPs (e.g., IGFBP-5). Because mRNA for most of
the IGFBPs (i.e., IGFBP-1 through -6) have been identified
in ovarian tissue of a variety of mammalian species [for
review, see 1–4, 34], it is likely that some of the changes
in FF IGFBP levels are due to changes in local synthesis
of the IGFBPs. The main cell layers of antral follicles (i.e.,
granulosa and theca) contain IGFBP mRNA and produce
IGFBPs in vitro, but which cell layer produces a particular
IGFBP is species specific. For example, equine granulosa
cells produce only IGFBP-2 and -5 [14]; murine [8, 35, 36]
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FIG. 1. Representative autoradiograph measuring proteolytic activity of
bovine follicular fluid (FF) to recombinant human 125I-labeled IGFBP-2
(A), -3 (B), -4 (C), and -5 (D). Lanes 1–2: FF samples from small subor-
dinate and large dominant follicles of cow 684; lanes 3–5: FF samples
from small subordinate, large dominant, and small subordinate follicles
of cow 275. Arrows indicates breakdown products: A, 12 kDA; B, none;
C, 10 and 15 kDa; D, 10, 12, and 15 kDa. (Modified from Spicer et al.
[48], with permission from Domest Anim Endocrinol.)

FIG. 2. Summary of densitometric scans of bands of breakdown prod-
ucts for 125I-IGFBP-4, -5, and -2 (n 5 6 animals) and expressed as arbitrary
densitometric units (ADU) per 6 ml of follicular fluid. a,b Within each
IGFBP, means without a common superscript differ (P , 0.05). Follicles
were classified as small (sm), large (lg), subordinate (Sub), and large dom-
inant (Dom) from preovulatory dairy cows. 125I-labeled IGFBPs were in-
cubated with FF and 125I-labeled breakdown products (see arrows in Fig.
1) were quantified densitometrically; ADU of multiple bands (i.e., break-
down products) were arithmetically added for a combined proteolytic
activity. (Modified from Spicer et al. [48], with permission from Domest
Anim Endocrinol.)

and bovine [37, 38] granulosa cells produce primarily
IGFBP-2, -4, and -5; and porcine granulosa cells produce
IGFBP-2, -3, -4, and -5 [39–41]. Physiological changes in
ovarian IGFBP mRNAs have been evaluated semiquanti-
tatively via in situ hybridization in several species and data
indicate that granulosa-cell IGFBP-4 mRNA increases dur-
ing atresia in rats [34, 35], and decreases during develop-
ment of large antral follicles in humans [42] and rats [8,
34]. In addition, the hormonal regulation of follicular pro-
duction of IGFBPs appears species and ovarian-cell specif-
ic. For example, FSH regulates IGFBP-4 and -5 production
by murine [8, 36, 43] and porcine [39] but not bovine [37,
38, 44] granulosa cells. Recently reported, LH and estradiol
decrease IGFBP-4 production by bovine granulosa cells
whereas LH and estradiol have no effect on IGFBP-4 pro-
duction by thecal cells [38]. Therefore, evidence exists to
support the notion that the changes in IGFBPs found in FF
are due, in part, to changes in local (i.e., granulosa or theca)
synthesis. However, IGFBPs transudating from the blood
cannot be ruled out as another source of FF IGFBP and is
more difficult to test experimentally. A third cause for
changing levels of IGFBP in FF is posttranscriptional mod-
ification via proteolytic degradation of the IGFBP [for re-
view, see 17, 45]. Several studies [14, 46–53] have reported
changes in intrafollicular IGFBP-2, -3, -4, and -5 proteo-
lytic activity during development of dominant preovulatory
follicles (Figs. 1 and 2) in several species (see next section),
indicating that changes in intraovarian levels of specific

IGFBPs may be regulated by changes in local synthesis as
well as proteolysis. In bovine thecal cells, LH increases
IGFBP-4 mRNA levels [44] but has no effect on IGFBP-4
production [38], a result likely due to increased proteolysis
of IGFBP-4. To complicate matters, inhibitors to these
IGFBP proteases may exist and be hormonally and tem-
porally regulated (see next section). As with the IGFBPs,
specificity of ovarian cell (i.e., granulosa and theca) IGFBP
protease activity/production may be species specific. This
review will focus on recent evidence documenting changes
in intraovarian IGFBP-2, -3, -4, and -5 proteolysis during
development of dominant follicles in cattle and other spe-
cies and discuss possible enzymes involved and their reg-
ulation.

IGFBP PROTEASES IN OVARIAN FOLLICULAR FLUID
AND THEIR CHANGES DURING FOLLICULAR
DEVELOPMENT

Intraovarian IGFBP-4 and -5 Proteolysis

As summarized in Table 1, IGFBP-4 and -5 proteolysis
by FF has been documented in several species including
cows (Figs. 1 and 2 [48–51]), mares [14], ewes [3, 46, 52],
sows [3, 47], and women [4, 53]. Proteolysis of IGFBP-2
by FF has also been reported in cattle (Figs. 1 and 2; [48,
54]), sheep [46], and pigs [47]. No proteolysis of IGFBP-
3 occurred in the presence of bovine (Fig. 1; [48]), equine
[14], porcine [47], or human [4, 53]) FF, whereas FF
IGFBP-3 proteolytic activity decreased during follicular
growth in ewes [46] (Table 1). A 1994 study [55] first re-
ported that a non-IGF-I binding fragment (approximately
21 kDa) for IGFBP-5 is present in bovine FF using im-
munoblotting techniques, but whether this fragment was
generated from within the follicle or transudated from se-
rum was not determined. In cattle, as in most species eval-
uated, FF concentrations of IGFBP-5 are over 2-fold greater
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TABLE 1. Summary of the relative changes in IGFBP-2, -4, and -5 protease activity in FF and granulosa cell PAPP-A mRNA in ovarian follicles during
follicular growth and atresia in various species.*

Species
Follicle

type
PAPP-A
protein

PAPP-A
mRNA

Proteolysis of
IGFBP-4

Proteolysis of
IGFBP-5

Proteolysis of
IGFBP-2

Woman Growing Increased
[108–110]

Unchanged
[99]

Increased
[53]

? ?

Atretic Decreased
[108–110]

Decreased
[99]

Decreased
[53]

? ?

Monkey Growing ? Unchanged
[111]

? ? ?

Atretic ? ? ? ? ?
Cow Growing ? Increased

[101]
Unchanged

[112]

Increased
[48, 78, 101]

Increased
[48, 78]

Decreased
[48]

Atretic ? Decreased/unchanged
[101, 112]

Decreased
[48, 101]

Decreased
[48]

Unchanged
[48]

Mare Growing ? ? Increased
[14]

Increased
[14]

Unchanged
[14]

Atretic ? ? Decreased
[14]

Decreased
[14]

Unchanged
[14]

Sow Growing ? Increased ?
[101]

Unchanged
[47]

Increased
[47]

Increased
[47]

Atretic ? Decreased ?
[101]

Unchanged
[47]

Decreased
[47]

Decreased
[47]

Mouse Growing ? Increased
[98]

? ? ?

Atretic ? Undetectable
[98]

? ? ?

* ? 5 Not determined/uncertain; numbers in brackets are reference numbers.

than those of IGFBP-4, and both of their concentrations are
much less than those of IGFBP-2 and -3 [15, 24, 48, 55].
Thus, changes in concentrations of FF IGFBP-4 and/or -5
would likely result in a small change in the concentration
of bioavailable or free IGF-I and -II, requiring the follicle
to be exquisitely sensitive to IGF-I or II (see next section).
Proteolysis of 125I-IGFBP-4 and -5 are negatively correlated
with FF levels of IGFBP-4 and -5 (r 5 20.6 to 20.8) and
positively correlated with FF estradiol (r 5 0.7–0.9) and
androstenedione (r 5 0.5–0.7) levels [48]. These observa-
tions imply either or both steroids may regulate IGFBP-4
and -5 levels via inhibition of their production, induction
of IGFBP protease activity, and/or inhibition of production
of IGFBP protease inhibitors such as tissue inhibitor of me-
talloprotease-1 (TIMP-1 [56, 57]). In support of steroid
control of IGFBP production, Spicer and Chamberlain [38]
observed that estradiol directly inhibited IGFBP-4 produc-
tion by bovine granulosa cells in vitro, but it was not de-
termined if this decrease in production was due to a change
in proteolysis of IGFBP-4. The hormones IGF-I, FSH, and/
or estradiol [20, 58] induce IGFBP-4 proteolysis in cultured
human granulosa cells. Also, FSH induces an IGFBP-4 and
-5 protease in rat granulosa cells in vitro [59–62], and the
IGFBP-5 protease was inhibited by IGF-I or IGF-II [61].
Similarly, IGF-I diminished IGFBP-5 proteolysis by human
osteocarcinoma cells [63] and ovine chondrocytes [64] and
diminished proteolysis of IGFBP-3 by cultured porcine
granulosa cells [65]. In contrast, IGF-I activates IGFBP-4
protease in cultured uterine myometrial cells [66] and en-
hances IGFBP-4 proteolysis by ovarian FF [49], and IGF-
II enhances IGFBP-4 proteolysis by human pregnancy se-
rum [67]. In view of data of Mazerbourg et al. [49] indi-
cating that IGF-I enhances IGFBP-4 degradation by bovine,
porcine, and equine FF, it is likely that IGF-I and -II directly
enhance IGFBP-4 protease activity present in ovarian fol-
licles rather than indirectly via IGF-I induction of steroido-
genesis [68, 69]. Additional data of Qin et al. [70] indicate

that IGF-II binding to IGFBP-4 makes IGFBP-4 more sus-
ceptible to proteolysis rather than IGF-II directly interacting
with the IGFBP-4 protease. Other hormones, including cy-
tokines and glucocorticoids, increased IGFBP-5 proteolytic
activity in conditioned medium from smooth-muscle cells
[71], but whether the inhibitory effect of cortisol on bovine
granulosa cell IGFBP-5 accumulation in vitro [37] is due
to increased IGFBP-5 proteolysis or decreased IGFBP-5
gene expression remains to be determined. Recent data doc-
umenting the hormonal regulation of ovarian IGFBP-spe-
cific protease mRNA will be summarized in the next sec-
tion.

Intraovarian IGFBP-2 Proteolysis

A 1994 study [55] reported that two non-IGF-I binding
fragments (22 and 14 kDa) for IGFBP-2 are present in bo-
vine FF using a combination of immuno- and ligand-blot-
ting techniques, but whether these fragments were gener-
ated from within the follicle or transudated from serum was
not determined. More recently, evidence for a small but
significant amount of IGFBP-2 proteolytic activity in bo-
vine preovulatory follicles was found when measuring ap-
pearance of a 12-kDa breakdown product of 125I-IGFBP-2
(Fig. 1 [48]). As summarized in Figure 2, large dominant
bovine follicles had significantly lower IGFBP-2 proteolyt-
ic activity, as measured by appearance of this 12-kDa frag-
ment, than subordinate small or large follicles [48]. Also,
proteolysis of 125I-IGFBP-2 was negatively correlated with
FF estradiol (r 5 20.68) and positively correlated with FF
levels of IGFBP-2 (r 5 0.55) (unpublished observations).
These results are the opposite of that observed for IGFBP-
4 and -5 proteolytic activity [48]. In contrast, there is a
small increase in IGFBP-2 proteolytic activity during fol-
licle growth in sheep [46] and pigs [47] detected by im-
munoblotting, but no change during follicle growth in hors-
es [14], indicating that species differences in FF IGFBP-2



1226 SPICER

FIG. 3. PAPP-A mRNA levels measured by quantitative real-time RT-PCR
in granulosa cells collected from preovulatory dominant and subordinate
bovine follicles 24 and 48 h after prostaglandin-F2a (PG)-induced luteol-
ysis. Values are means 6 SEM of 4–6 follicles and expressed as fold of
lowest mean. No significant differences were noted.

FIG. 4. Hypothesized role of IGFBPs and their proteases during follicular
development in cattle. Phase A: (Day 1–3 postovulation [PO]) small fol-
licle PAPP-A gene expression (and hence IGFPB-4 proteolysis) in granu-
losa cells is stimulated by FSH while thecal IGFBP-4 gene expression is
stimulated by LH. Phase B: (Day 3–5 PO) the selected follicle’s PAPP-A
activity is further enhanced by increased free IGF-I and -II, which further
increases estradiol (E2) and androstenedione (A4) production, which in-
creases tissue kallikreins activity (and hence increased IGFBP-5 proteol-
ysis). Phase C: (Day 5–8 PO) dominant follicle IGFBP-2, -4, and -5 mRNA
and tissue kallikrein mRNA in granulosa cells is suppressed (and hence
decreased IGFBP-2 proteolysis) by LH and estradiol. DF, dominant folli-
cle; SF, subordinate follicle.

proteolysis may exist (Table 1). In these previous studies
[48, 54], IGFBP-2 proteolytic activity was much weaker
than that of IGFBP-4 and -5. Furthermore, proteolytic
cleavage of IGFBP-2 by pregnancy-associated plasma pro-
tein-A (PAPP-A) took longer to develop than that of
IGFBP-4 [48, 54], suggesting that PAPP-A may be required
to activate another enzyme that then degrades IGFBP-2 (see
next section). Differences in techniques may also account
for some of the discrepancies in the literature. Degradation
of 125I-labeled IGFBPs is considered one of the more pre-
cise methods of detecting IGFBP proteolysis [45], and an-
tibodies used for immunoblotting may not recognize pro-
teolytic fragments or may cross-react with other IGFBPs
[17, 24, 72]. Further research will be required to elucidate
the differences in FF IGFBP-2 proteolysis among species.

IDENTIFICATION AND HORMONAL REGULATION
OF OVARIAN IGFBP PROTEASES

Ovarian IGFBP-4 and -5 Proteases

The IGFBP protease(s) detected in porcine FF was in-
hibited by metalloprotease inhibitors (e.g., EDTA) but not
serine protease inhibitors [47]. However, a serine protease,
similar to plasmin, produced by porcine granulosa cells,
degraded IGFBP-3; degradation of other IGFBPs was not
evaluated [65]. Why IGFBP-3 proteolysis by porcine FF
was not detected [47] while porcine granulosa cells produce
IGFBP-3 protease activity [65] is unknown, but may indi-
cate other factors, such as an endogenous IGFBP-3 protease
inhibitor [56, 57], TIMP-1, are present in FF [73–76] but
may not be produced in vitro. Using various pharmacologic
enzyme inhibitors, the protease that degrades IGFBP-3, -4,
and -5 found in sheep FF has been identified as a serine
metalloprotease [46, 52]. The IGFBP protease in bovine
[48, 77, 78] and equine [14, 49] FF also has characteristics
of a serine metalloprotease and has been hypothesized to
be pregnancy-associated plasma protein-A (PAPP-A) a pap-
palysin and member of the metzincin protease family [49,
53, 77–79]. In order for PAPP-A to cleave IGFBP-4, IGF-
I or -II must be present [49, 67, 70]. In mares, the serine
metalloprotease degrades IGFBP-5 but not IGFBP-2 and -

3, and is inhibited by two kallikrein-specific inhibitors [14].
A protease produced by rat granulosa cells that degrades
IGFBP-5 but not IGFBP-1, -2, -3, -4, or -6 was not inhib-
ited by serine protease inhibitors or two metalloprotease
(MMP) inhibitors, TIMP-1 and -2 [61, 80], indicating that
species differences may exist in terms of which specific
protease exists in the follicle and which specific IGFBP(s)
is (are) targeted by these proteases in FF. It should be em-
phasized that many of these studies used single doses of
the various inhibitors and evaluated single substrates (e.g.,
IGFBP-4), which may have incompletely characterized the
enzyme activity. Indeed, the specificity of the IGFBP pro-
tease is likely due to differential expression of one or more
of the numerous types of metalloproteases (e.g., MMP-1,
-2, -9, -13 [for review, see 81–83]) and/or serine proteases
(e.g., plasmin, PAPP-A, kallikrein [for review, see 84, 85])
among species. In addition to PAPP-A, PAPP-A2 (a pap-
palysin and member of the metzincin protease family),
cleaves IGFBP-5 and is not dependent on IGF-I/-II for its
activity as is PAPP-A [86, 87]. As mentioned, another ser-
ine metalloprotease family, the kallikreins [84, 85, 88–90],
are present in FF [91, 92] and may degrade several of the
IGFBPs, including IGFBP-2 [93, 94], IGFBP-3 [93, 95,
96], and IGFBP-5 [14, 48]. At least 15 specific kallikrein
genes have been identified in humans [85, 88–90]. It is
clear from work in nonovarian tissues that there is frequent
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coexpression of many kallikreins in the same tissues, and
this may point to a functional relationship among various
proteolytic enzymes [88]. In particular, kallikreins may ac-
tivate one or more MMPs [97], which then may cleave
IGFBPs. Moreover, mRNA for PAPP-A [98–101], MMPs
[82, 83], and various kallikreins (e.g., K2–4, K6–9, K12
[102–107]) have been detected in ovarian tissues. In mice,
exogenous PMSG treatment increased whole ovarian
PAPP-A mRNA levels by 5-fold within 24 h; levels re-
turned to baseline by 48 h, attesting to the fugacious char-
acter of PAPP-A mRNA regulation [98]. In situ hybridiza-
tion studies with rodents and humans revealed the granu-
losa as the main cell layer of PAPP-A mRNA localization
within the follicle, although the corpus luteum also exhib-
ited strong PAPP-A gene expression [98, 99]. Interestingly,
the presence of PAPP-A in human FF was first discovered
nearly 20 yr ago [108–110]. In these early studies, it was
reported that FF concentrations of PAPP-A and estradiol
were significantly correlated [108, 109]. Similarly, a more
recent study using quantitative reverse transcription-poly-
merase chain reaction (RT-PCR) showed a significant pos-
itive correlation (r 5 0.73–0.79) between granulosa cell
aromatase mRNA and PAPP-A mRNA levels measured in
variously sized healthy and atretic bovine and porcine fol-
licles [101]. However, little or no differences in levels of
PAPP-A mRNA in granulosa cells exist between small and
large healthy bovine and porcine follicles [101]. Consistent
with the latter observation, Zhou et al. [111], using in situ
hybridization of monkey ovaries, recently discovered that
PAPP-A mRNA was widely expressed in granulosa cells
of follicles of all sizes with no apparent correlation between
PAPP-A and LH receptor mRNA intensity. Also, hCG
treatment of monkeys increased IGFBP-4 mRNA levels in
theca cells but had no effect on PAPP-A mRNA levels in
granulosa cells [111]. We find no difference in PAPP-A
mRNA levels in granulosa cells between preovulatory dom-
inant and subordinate follicles in cattle (Fig. 3 [112]) and
no correlation between levels of PAPP-A mRNA and
IGFBP-4 mRNA or protein in granulosa cells (unpublished
data). Interestingly, a recent immunolocalization study us-
ing human ovaries indicated that granulosa, theca, and lu-
teal cells stained for PAPP-A [113]. Therefore, either
PAPP-A gene expression is so acutely regulated that dif-
ferences among follicle classes are missed or other prote-
ases and/or their inhibitors are involved in IGFBP degra-
dation. Further work will be required to elucidate these pos-
sibilities, as well as determine whether the hormonal con-
trol of PAPP-A production/gene expression by the ovary
differs between monotocous and polytocous animals. If
PAPP-A is involved in selection of dominant follicles, then
differences among monotocous and polytocous animals
would be expected.

Ovarian IGFBP-2 Proteases

As summarized in the previous section and Table 1, pro-
teolysis of IGFBP-2 by FF from dominant follicles has been
reported for cattle [48, 113], sheep [46], and pigs [47], but
not mares [14]. A recent report indicates that the IGFBP-2
proteolytic activity in bovine FF, detected by immunoblot-
ting, may be due to PAPP-A [54]. Also, IGFBP-2 prote-
olysis decreased in dominant versus subordinate bovine fol-
licles [48]. If PAPP-A is responsible for IGFBP-2 degra-
dation and PAPP-A activity increases as dominant follicles
develop [77, 78, 101], then other factors must be involved
in regulating IGFBP-2 levels in FF [48]. Evidence for sev-

eral possibilities exist: 1) intraovarian (i.e., granulosa or
theca) production of IGFBP-2 may decrease [37, 38], 2)
increased heparin-binding fragments from degraded
IGFBP-5 may block PAPP-A cleavage of IGFBP-2 [54,
96], 3) decreased intrafollicular IGF-II [2, 15] may reduce
the effectiveness of PAPP-A on IGFBP-2 [94, 114], and/or
4) decreased production of other intraovarian IGFBP-2-spe-
cific proteases, such as kallikreins [106], may occur. Be-
cause levels of estradiol and androstenedione were nega-
tively correlated with FF IGFBP-2 levels in bovine [48]
and equine [14], further research should focus on the role
that these hormones play in regulating follicular IGFBP-2
production and gene expression. In addition, studying the
presence and regulation of other enzymes known to cleave
IGFBPs such as the disintegrin metalloproteases (e.g.,
ADAM [115–117]) and the complement serine proteases
(e.g., C1 [71, 118, 119]) within the ovary will likely be
fructuous areas of future research. Regarding the latter class
of proteases, a recent study indicated that a portion of the
dexamethasone-induced increase in IGFBP-5 protease ac-
tivity in vitro was due to increased release of C1-inhibitor
by human fibroblasts [71]. Elucidation of ovarian IGFBP-
specific protease inhibitors should also be a focus of future
research.

CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, levels of IGFBP-4 and -5 proteases in-
crease in large preovulatory follicles coincident with a re-
duction in IGFBP-2, -4, and -5 levels and an increase in
FF estradiol and androstenedione (Fig. 4). In contrast, little
or no IGFBP-2 and -3 protease activity exists in FF of
preovulatory or subordinate follicles of most species. Thus,
low amounts of IGFBP-4 and -5 in dominant follicles may
be a result of enzyme degradation, whereas loss of IGFBP-
2 in preovulatory dominant follicles is not. Furthermore,
greater FF proteolysis of IGFBP-4 and -5 along with lower
binding activity (i.e., levels) of IGFBP-4 and greater
amounts of free IGF-I (i.e., 2–9 ng/ml [78, 120, 121]) are
the earliest developmental changes that have been docu-
mented in bovine follicles .6 mm in diameter [32, 78,
120]. Aromatase activity in bovine follicles is exquisitely
responsive to low concentrations of IGF-I in the presence
of FSH (i.e., ED50 5 5–6 ng/ml [68]), and this effect sup-
ports the hypothesis that small increases in free IGF-I are
sufficient to stimulate the process of follicular differentia-
tion (Fig. 4). Future research should focus on identifying
the species-specific hormonal regulators of IGFBP-4- and
-5-specific protease(s) in FF as well as further characterize
the temporal interactions that may exist among the various
proteases and their inhibitors present within the ovarian fol-
licle during its development.
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